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A fast kinematic dynamo in two-dimensional 
time-dependent flows 
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(Received 10 November 1992 and in revised form 10 February 1993) 

A time-continuous, constant-resistivity version of the fast dynamo model introduced 
by Bayly & Childress (1988) is studied numerically. The expected dynamo mechanism 
in this context is described and is shown to be operative in the simulations. Exponential 
growth of the fastest growing mode is observed, with the growth rate for the smallest 
resistivity attempted ( I /&  = lop4) agreeing well with the Bayly-Childress model. It is 
argued, based on the long- and short-wavelength behaviour of the mode for different 
resistivities, that the growth rates obtained for the R, = lo4 case should persist as 
R,+CO. 

1. Introduction 
An understanding of how and when magnetic fields can be generated from the flow 

of an electrically conducting fluid is important to our understanding of many problems 
including the generation of the Earth’s, the Sun’s, and others stars’ magnetic fields and 
the formation of coronas around the Sun and other stars. Specifically related to the 
magnetic field structures of the Sun is the problem of how such fields can be produced 
in the limit of infinite electrical conductivity. Magnetic Reynolds numbers R, of 1O1O 
or higher are typical of the Sun and its corona. Magnetic field generation under these 
circumstances (R, + co) is usually referred to as a fast dynamo process (Vainshtein & 
Zel’dovich 1972) and has been of considerable interest in the past few years. The 
existence of fast dynamos is important not only to such problems, but is also of interest 
in its own right, representing a fundamental characteristic of the relationship between 
magnetic fields and matter. 

Several types of flows which could lead to fast dynamo action have been suggested, 
as reviewed recently in Childress et al. (1990) and Roberts & Soward (1992). Among 
these are steady two- and three-dimensional flows (Soward 1987) including the ‘ABC’ 
class of flows (Arnol’d & Korkina 1983; Dombre et al. 1986; Galloway & Frisch 1986; 
Gilbert & Childress 1990; Gilbert 1991), chaotic flows resulting from overlapping 
resonances (Strauss 1986), flows associated with coordinate mappings (Bayly & 
Childress 1987, 1988; Finn & Ott 1988), and unsteady two-dimensional flows 
(Galloway & Proctor 1992). The flows employed in the study presented here fall in this 
last category, with early results originally reported in Otani (1988). 

In this paper, two computer codes are used to examine the possibility of the presence 
of a fast dynamo in a prescribed flow (the ‘kinematic’ fast dynamo problem). Two 
flows are considered for this study: the first is a time-continuous version of the flow 
examined by Bayly & Childress (1987, 1988, 1989), while the second is a closely related 
variant. An advantage of the Bayly-Childress flow is that neither the flow itself nor its 
vorticity contains singularities. The flow thus has physically realizable analogues, the 
flow used in this study being one example. The aim of this research is to determine if 
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the positive results obtained by Bayly & Childress with respect to the presence of a fast 
dynamo apply to the actual flow situation corresponding to the mapping they use in 
their work. 

2. The equations 

problem is governed by 
The evolution of the magnetic field B in the magnetohydrodynamic (MHD) dynamo 

= V x (U x B) +qV2B, (1) 
aB - 
a t  

which is derived from Faraday's law, Ampere's law without displacement current, and 
Ohm's law. When V . u = 0, as it always is for the work presented here, (1) is equivalent 
to 

(2) 
aB - = - u * V B + B * V U + ~ V ~ B .  
a t  

In these equations, 7 is a constant electrical resistivity and u is a specified, two- 
dimensional, time-dependent, incompressible, spatially periodic flow. We use two very 
similar flows in this work, 

u(x ,y ,  t )  = 2(~ /3s inx+z"acosx )~os~w~ t+2(R/3siny+z"acosy) sin'w, t (3) 
and 

u(x,y, t )  = 2(~/3sinx+2acosx)cos2wo t+2(-R/3siny+z"acosy)sin2wot, (4) 

with a, /3, and oo being constant parameters. The system is periodic in each of the 
orthogonal directions R , 9 ,  and 2, with periodicity length 27t in the R- and 9-directions, 
and 27c/k, in the 2-direction. The system is initialized with a seed field of the form 
B(x, t = 0) = f B ,  exp (ik, z) ,  where B, and k, are constants. 

The flow described by (3) is essentially identical to the one proposed by Bayly & 
Childress, except that the square-wave 'pulses' in the flow have been smoothed so as 
to be continuous in time, varying as sin2 wo t and cos2 wo t. Additionally, the system itself 
is essentially the same as the Bayly-Childress model, except that the electrical resistivity 
q is not turned on and off, but is instead held constant throughout the simulation. The 
Bayly-Childress model is thus recast into a more realistic, physically realizable form. 

The dynamo action expected of this flow is of the stretch-fold-shear variety (cf. the 
mapping discussed in Bayly & Childress 1988). Figure 1 illustrates the mechanism. 
Assume that, initially, the R-component of the magnetic field is non-zero when 
averaged over x and y .  We take this mean field as the seed magnetic field for the 
dynamo action we outline here. (The term 'mean' magnetic field in this paper refers to 
the x- and y-averaged magnetic field at a given z ;  the overall z-averaged magnetic field 
is always zero in all the models we employ.) The field is initially and always defined to 
be the real part of a function having a dependence in the z-direction of exp (ik, z )  ; thus, 
on constant-z planes separated by rc/k,, the field will point in opposite directions, as 
shown in figure l (a) .  

The 9-component of the cos2 wo t term in the flow given by (3) can be represented in 
simplified form on each of these planes by the arrows shown in figure l(b). This 
component of the flow will tend to stretch the field, yielding the configuration depicted 
in figure 1(c). The essential feature of this field is the spatial arrangement of its 9- 
component, displayed in figure 1 (d). The strength of this generated 9 magnetic field is 
determined by the flow parameter p. 
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FIGURE 1. Illustration of a simplified model of the dynamo action expected to be present for the flows 
employed in this study. (a) Orientation of the seed magnetic field B, on three constant-z planes. (b) 
Sketch of the $-component of the flow pulse. (c) Effect of the 9-component of the flow on the seed 
magnetic field. ( d )  Essential arrangement of the 9-component of the magnetic field illustrated in (c ) .  
(e) Sketch of the 2-component of the flow pulse. ( f )  Effect of the 2-component of the flow on the 
magnetic field shown in (d) .  
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The 2-component of the cos2 w, t term in (3), shown in figure 1 (e), acts simultaneously 
with the 9-component to push the 9-component of the magnetic field up and down 
between the planes illustrated. If the parameter a is adjusted appropriately (a  - 0.5 for 
k, = 1 and w, = l), the effect of the ?-directed flow will be to push similarly directed 
9-components of the magnetic field into constant-z planes positioned halfway between 
the original planes (figure If). This new mean field B, can easily be made larger than 
the original seed field B, by, for example, adjusting p, thereby producing a positive 
dynamo effect. The conjecture of Finn et al. (1991) is relevant here, suggesting that the 
dynamo effect should persist in the R, --f 00 limit. Once the mean field B, is created, 
the situation is again essentially the same as figure l (a ) ,  with the new field ready to 
serve as the seed field for the next flow pulse (the sin2 oo t term). 

It is this next pulse which distinguishes (3) and (4). When the cos2 w, t flow in (4) is 
rotated 90” so that 2+9 and 9+ -2, the result is the sin2 w, t flow. It follows that the 
helicities of both flow pulses are the same, so we refer to cases involving flows of the 
form defined by (4) as non-reversing helicity cases. Since the B, seed field on which the 
sin2w, t flow operates is, apart from an inconsequential translation in 2, similarly 
rotated from the B, seed field, the actions of both pulse terms in (4) on their 
corresponding seed fields are identical (within this simplified model). Note also that the 
result of the action of the sin2 w, t pulse is to generate a mean B, field in the same 
direction as the original B, seed field on which the cos2 wo t pulse previously acted. 

In contrast, the sin2 w,, t term of the Bayly-Childress-equivalent flow, (3), is a mirror 
image (a+-2) of the sin2w,t term in (4). We thus refer to cases involving flows 
defined by (3) as reversing helicity cases. The B, field generated by the sin2 w,, t pulse is 
antiparallel to the field that existed before the application of the cos2 w, t flow pulse. 

This simplified description of the dynamo action in our model can provide the basis 
for an estimate of the magnetic field growth. Consider the effect of a single pulse flow 
of the form 

( 5 )  

on a seed field B(t =0) = (B,,, 0,O) ei@. Neglecting diffusion, (2) yields 

u(x, t )  = 2 v 9  sin x + a2 cos x) sin2 oo t for 0 < t < x/wo 

a ~ ,  au 
at az ax 

y - -  U, -+ B,  2. i3B -- 

The second term on the right-hand side of (6b) generates the 9-component of the 
magnetic field in figures 1 (c) and 1 ( d )  which is then advected in the 2-direction (figure 
1 e) by the first term. Equation ( 6 a )  simply yields the advection of B, by u, : 

B, = B,, exp (- ik, &(t) a cos x) eikzz, (7) 

where sin 2w, t dt’2sin2w,t’ = t--, 
2WO 

which, when scaled by a, is just the maximum displacement due to u, after time t. When 
(7) is substituted into (6b) and the result integrated to t = x /wo  (one pulse duration) the 
resulting $-magnetic field is 
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By averaging over x and y ,  we obtain an estimate of the growth of the mean magnetic 
field per flow pulse: 

(9) @y(t = dwo)),, y 

4 0  

where J1 is a first-order ordinary Bessel function. 

3. The numerical model 
Equations (1) and (2) are most easily solved in terms of the spatial Fourier 

coefficients of B. Use of this type of method (spectral method) is particularly efficient 
for this flow, because a Fourier mode characterized by wavenumber k = (k,, k,, k,) 
couples only to itself and the modes (k ,  & 1, k y  1, k,): thus minimizing the number of 
calculations required per simulation timestep At. This also implies that the different 
values of k, are independent of one another, and may be studied individually in 
separate runs. Furthermore, the form of the equations allows both codes to run fully 
vectorized on Cray machines. 

To ensure numerical stability, a predictor-corrector method is used to advance the 
magnetic fields in time. The resistive term is done implicitly. Specifically, the timestep 
algorithm used for (2) is 

B,(k) = Bold(k) + €At { - i[(k f a) - U( & g)] Bold(k i 2)  ’ 
- i[(k T$) - ~ ( i y ” ) ]  B,,,(k ~ y ” )  
ki[i.Bo,,(kT2)]u( ki) 
kilv”.Bo,,(kfy”)lu(+y”)l, (104 

( lob)  Bp,.ed(k) = (1 + yk2e At)-’B,(k), 

Bdk)  = Boid(k) + At c { - i[(k f 9) * U( k a)] Bpred(k T 2) 
* -i[(kTy”).u(k9)1 B,,,,(kfy”) 
i i[2 - B,,,d(k T a)] U( i 2) 
ki[y^*Bp,ed(kT9)] U( ky”>>, (10c) 

( 1 0 4  B,,,(k) = (1 + qk2At)-lBb(k),  

where B(k) and u(k) are the Fourier transforms of B and u, and e > 0.5 is required for 
numerical stability. A similar set of equations is used for (1). 

We used as our primary simulation code the one modelling (2), because it ran 
somewhat faster than the code for (1). The code for (1) was run occasionally to verify 
that both codes were operating properly. When both were run, they agreed to a very 
high degree of accuracy. We also verified the codes by using them to compute V . B .  
When checked, it was zero to one part in 10l2. 

Normally, the codes followed all three components of the magnetic field. Note, 
however, that the computation of B, and By does not depend on B,. When B, was not 
needed for diagnostic purposes or for verifying V - B = 0, it was often omitted, allowing 
the code to run with a 50% increase in speed. 

4. Results 
The parameters for our runs were chosen so that the simplified dynamo model 

described above would be relevant. Except where otherwise indicated, the parameters 
a = 0.5, /3 = 1.0, k, = 1.0, and wo = 1.0 were used, which, according to the simplified 
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FIGURE :. Plots us. time of (a) [C,\B(k)12]f for the cases of reversing and non-reversing helicities; 
(b) (k2)2 = [&k21B(k) 12/C,IB(k) 12]s, for the cases of reversing and non-reversing helicities, and 
(c) (Re [B,(k = 0; k,,, = 64)] - Re [B,(k =O;  k,,, = 32)] I/[Re [B,(k = 0; k,,, = 64)y + Im [B,(k=O; 
k,,, = 64)I2]f. -, reversing helicity ; -, non-reversing helicity. 

model, should exhibit dynamo action. With 7 = 2.513 x lop3, the inverse magnetic 
Reynolds number, defined here as Ri l  = 7T/L2,  is low4 for our case, where T = 42w, 
is the effective pulse length and L = 2n: is a characteristic system length. The numerical 
parameters At = 0.01 or 0.005 and 6 = 0.65 were used in all the simulations discussed 
here. Wavenumbers in the square region - 32 d k,, k, d 32 were kept, with modes 
with either k, or k, equal to +33 defined to be 0 at all times t. 

Typical time series obtained from our simulations are illustrated in figures 2 and 3. 
After an initial transient, the magnetic field energy was observed to grow with fairly 
clear exponential growth for several tens of flow pulses (figure 2a). Similarly, our 
simple measure of the relative participation of the various Fourier modes, the root- 
mean-square wavenumber, settles down following the initial transient to a steady 
pattern which oscillates in synchrony with the flow pulses. The steadiness of the pattern 
indicates that the simulation has been run long enough to include fully the shortest 
wavelengths followed by the simulation. Figure 2(c)  suggests that enough wave- 
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FIGURE 3. Plots us. time of Re [BJk = O)] and - Im [B,(k = O)] for the reversing and non-reversing 
helicity cases. Also shown for reference are the functions cos2 w,, t and sin2 w,, t .  The time designated 
as t = 49.77 indicates the time at which figures 5 and 7(a) were made. 

numbers were kept - when the same simulation was run with - 64 < k,, k ,  < 64, the 
relative change in the mean magnetic field was of order lop5. 

The time envelopes of the real and imaginary parts of the mean field components 
were observed to grow exponentially with the same growth rate as the square root of 
the magnetic field energy. The components' detailed time dependence, well after the 
initial transient, is shown in figure 3 .  The Re [B,(k, = 0, k,  = O ) ]  component shown 
in the figure is equivalent to the mean A? magnetic field at z = 0 (cf. figure l), while 
- Im [B,(k, = 0, k,  = O ) ]  corresponds to the mean value of By at z = 7c/2kZ. As predicted 
by the simplified model, both components of the mean magnetic field alternate sign in 
the reversing-helicity case, and never change sign in the non-reversing-helicity case. 
Also as predicted by the model, extrema in the reversing-helicity case and maxima 
in the non-reversing-helicity case occur for B, and B, shortly after the peaks in the 
sin' q, t and cos2 wo t functions, respectively. 

A comparison of the growth rates from the simulations with those predicted by 
theory is shown in figure 4. The simulation growth rates agree quite closely with those 
found by Bayly & Childress (1988) (trace b) for the lowest resistivity examined (R,  = 
lo4, trace c), with growth rates for the higher resistivities (e.g. R, = lo3, trace d )  
converging on the R, = lo4 values as the resistivity was decreased. This suggests that 
the Bayly-Childress mapping model is a good representation in the large-R, limit of 
the physically realizable model we employ here. Trace (e) in figure 4 is a plot of the 
growth rates from the simplified dynamo model (equation (9)) us. a!. It agrees most 
closely with the other traces in the vicinity of a! = 0.5, which corresponds to those 
values of a! which bring similarly directed magnetic fields to the same constant-z plane 
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FIGURE 4. Growth rates of [XklB(k)(2]~ (in units of Tl) us. CL for (a) the non-reversing-helicity case, 
R,  = lo4, (b)  the Bayly-Childress (1988) mapping, R ,  = lo4, (c) the reversing-helicity case, R, = lo4, 
(d )  the reversing-helicity case, R ,  = lo5, and (e) the simplified dynamo model, as predicted by 
equation (9). 

(figure 1 e , f ) .  This suggests that the mechanism described by the simplified model is the 
dominant dynamo mechanism for a: in the neighbourhood of 0.5. Figure 4 also shows 
the growth rates obtained for the non-reversing-helicity case (trace a). It too exhibits 
substantial growth near 01 = 0.5 although, interestingly, the growth is somewhat less 
than in the reversing-helicity case. One would expect the growth rate to be less in the 
reversing-helicity case since, according to the simplified model, the dynamo-generated 
field points in the direction opposite to the seed field of the previous flow pulse, which 
would tend to produce some cancellation. 

Diagnostics were installed to allow the display of greyscales of the spatial structure 
of the various magnetic field components located in individual constant-z planes at 
specified times. For parameters characteristic of the simplified model, the magnetic 
field structures shown in figure 5 are typical. In the reversing-helicity case, the strongest 
magnetic fields tend to congregate along the diagonals of the box in a series of long thin 
structures. The field lines tend to be directed along the length of these structures. 
Movies assembled with frames such as those shown in figures 5 (a) and 5 (b) show that 
these structures emerge from the corners at (x, y )  = (0,O) and (2n, 2n) and proceed 
towards the centre of the box at (x, y )  = (n, n). As the structures approach the centre, 
they are stretched out along the other diagonal of the box. Additionally, oppositely 
directed magnetic fields typically 'drop in' from above or below the fixed points 
located at (x, y )  = (n, n) or (0,O) respectively. 

These phenomena are explained by the flow pattern in the limit of infinitesimal pulse 
width (n /w,  + 0), shown in figure 6(a).  The diagonals on which the strongest magnetic 
field structures appear correspond to the boundaries of the convective cells of the flow 
in this limit, while the motion, stretching, and dropping in of the structures is explained 
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FIGURE 5. Greyscale plots us. x and y at t = 49.77 for R,  = lo4 of (a)  B, at z = 0 and (b )  B, at z = 
7c/2kz for the reversing-helicity case, and (c)  B, at z = 0 and ( d )  B, at z = 4 2 k ,  for the non-reversing- 
helicity case. 

X X 

FIGURE 6. Features of (a) the reversing-helicity flow and (b) the non-reversing-helicity flow in the limit 
of infinitesimally short pulses (7c/wo+O). The arrows depict the flow in the (x,y)-plane along the 
convective cell boundaries. The dotted lines outline the boundary between positive (upward) and 
negative (downward) flow in the f-direction. Note that the two cases are inherently different. The 
convective cell boundary coincides with the boundary separating upward and downward flow for the 
non-reversing-helicity case, and crosses through the centre of the upward and downward flow regions 
for the reversing helicity case. 

by the direction of the flow along these boundaries and the overall 2-component of the 
flow. The most obvious effect of the finite width of the flow pulses is the observed 
swaying of the dominant field structures to either side of the infinitesimal-pulse-width 
convective cell boundary. 
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FIGURE 7 .  (a) Greyscale plot of the real part of the Fourier transform of B, at time t = 49.77 for 
Rm = lo4. The scale has been expanded to show the low-amplitude, high-k modes. The amplitudes 
of these modes are approximately 1/100th those of the largest low-k modes. (b) Plot us. Ikl of 
(B(k, f)I'/&lB(k, t ) l z  averaged over one pulse period: t = 46.63 to 49.77. An average over the period 
t = 25.00 to 28.14 produced a nearly identical spectrum. 

The non-reversing magnetic field structure, shown in figures 5 (c) and 5 (d ) ,  exhibits 
analogous features in the same zero-pulse-width limit (figure 6b). Note that this flow 
is intrinsically different from the reversing helicity flow of figure 6(a). Field structures 
are not observed to drop in for the non-reversing-helicity case, because the main 
upward and downward convection occurs in the centre of the convective cells, where 
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FIGURE 8. Greyscale plots us. x and y at t = 49.77 for R, = lo3 of B, at z = 0 
for the reversing-helicity case. 

the field is relatively weak, rather than on the convective cell boundary. This may 
account for the somewhat smaller growth of the non-reversing-helicity case for a = 0.5 
mentioned earlier. 

A comparison of figures 5(c) and 5 ( d )  with 5(a) and 5(b) also reveals features 
consistent with the time histories displayed in figure 3 in the vicinity of t = 49.77. B, 
in figures 5(a) and 5(c)  is predominantly positive (evidenced by the predominance of 
the lighter shades of grey), having just been stretched by the 2-directed flow with 
sin' wo t time dependence. In contrast, By appears with both polarities in figure 5 (b), as 
a result of field being dropped in by flow in the z-direction arising from the onset of the 
cos2 wo t pulse. By and large, only a single polarity for By appears in figure 5(d) ,  since 
what little z-directed flow occurs in the strong magnetic field regions serves only to 
drop in like-directed field, according to the simplified dynamo and infinitesimal-pulse 
flow models described above. 

Figure 7(a) shows the Fourier space typical of runs exhibiting the dynamo effect. 
The relatively solid pattern of the upper-right and lower-left arms of the X-pattern and 
the checkboard pattern of the remaining arms are consistent with the localization of 
the dominant magnetic field structures near the diagonals in figure 5 (a). When viewed 
as a movie, the angle between the arms of the X in Fourier space expands and 
contracts, like a butterfly beating its wings, in concert with the rhythm of the pulsed 
flow. Figure 7 (b) shows the time-averaged normalized power spectrum. Two regimes 
are apparent, with the transition occurring at about Jkl = 20. The gradual fall-off of - lkl-2 for Ikl < 20 appears to be associated with the large-amplitude central portion 
of the X in figure 7(a). Additional analysis of this spectrum is pending. 

Perhaps the most important feature of the Fourier space is the relative insensitivity 
of the amplitudes of the modes near k, = k,  = 0 (the long-wavelength modes) to the 
value of the resistivity. As the resistivity is decreased, the low-wavenumber pattern (i.e. 
lk,l, Ikyl 5 7 in figure 7a) at any given time changes very little. The principal difference 
among Fourier space plots obtained from runs with different resistivities appears not 
at low but at high k, where, as might be expected, the arms are observed to extend 
farther into the high-k regions as the resistivity is decreased. The essential spatial 
structure (e.g. figure 5a) is also correspondingly insensitive to the value of the 
resistivity. When compared to the higher resistivity run shown in figure 8, the spatial 
structure in figure 5 (a) shows better definition, but remains otherwise unchanged. 
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FIGURE 9. Greyscale plot of the real part of the Fourier transform of B, 
at time t = 49.77 for q = 0. 

We also find that the low-wavenumber pattern does not change at all when the 
number of Fourier modes is increased from 32 to 64 when R, = lo4. The primary 
inference to draw here is that the code, although restricted in its representation of 
Fourier space, is following the low wavenumbers with reasonable accuracy. 

In another test, we tried exciting initially only the highest-k modes kept by our 
simulation (i.e. those modes near the edge of the Fourier-space box). The magnetic field 
energy is observed to grow only half as rapidly as normal until the dominant mode is 
able to establish itself from stray fields. The growth rate then reverted to its original 
value. The implication is that the growth of the dominant mode is driven by dynamics 
at long rather than short wavelengths. This, combined with the linearity of the 
equations in B and the fact that the high-k modes are typically 100 times smaller in 
amplitude than the low-k modes in typical dynamo runs such as the one depicted in 
figure 7, suggests that the effect of high-k modes is relatively minor. 

One last test we made simply involved setting the resistivity to zero. The simulation 
in this case is physically invalid, since spatial Fourier modes are excited up to the 
highest k modes retained which are not properly treated by the simulation. The results 
are nevertheless of interest. The arms of the X-pattern in Fourier space reach all the 
way to the edge of the box in this case, and there artificially ‘bounce’ off back towards 
the centre of the box (figure 9). We find, however, that the amplitudes associated with 
this ‘reflection’ in Fourier space decay as the reflection propagates away from the edge, 
and, more importantly, do not seem to affect the primary X-pattern associated with the 
fastest-growing mode. The growth rates are only slightly different, being higher by 
approximately 10 %. Again, the test suggests that the impact of the short-wavelength 
modes on the long-wavelength dynamo mechanism is minimal as R, --f co. 

5. Conclusions 
We have conducted simulations of a physically realizable version of the 

Bayly-Childress dynamo model which show a number of features strongly suggestive 
of the presence of a fast dynamo. The results presented here provide compelling but 
still not definitive evidence for the existence of fast dynamo action within the model. 
We would like, in particular, to improve our understanding of the effects of short 
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wavelengths on dynamo activity in our simulations as R, + co. The model we employ 
was designed to produce dynamo activity using a mechanism which relies on a specific 
coupling of long-wavelength spatial Fourier components of the magnetic field. Within 
the parameter regime most appropriate to the functioning of this mechanism (a - O S ) ,  
we obtain growth rates for the largest magnetic Reynolds number we studied (R, = 
lo4) which are approximately equal to those expected from the operation of this 
mechanism. The growth rates obtained also agree well with those found by Bayly & 
Childress from their mapping model, suggesting that their model is a good 
representation of our physical model. We can say with confidence that dynamo action 
exists for fairly large Reynolds numbers (R, = lo4), since the simulation showed 
effectively identical behaviour when the number of spatial Fourier modes was doubled. 
Exponential growth of the magnetic field was observed both for the flow whose helicity 
reversed between pulses, and for the flow whose helicity did not reverse. The long- 
wavelength structure was unchanged as R, was decreased, strongly suggesting, but not 
proving, that the expected dynamo mechanism would continue to be operative as 
R, + co. Finally, two non-physical tests, one in which the simulation was initialized 
with all the energy in the short-wavelength modes, and one with zero resistivity, both 
suggest that the effect of short-wavelength modes on the long-wavelength dynamo 
mechanism is not of important consequence as R, + 00. 
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